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MEMORANDUM 2-9-59E

AIR-C00LED TURBINE BLADES WITH TIP CAP FOR

IMPROVED LEADING-EDGE COOLING

By Howard F. Calvert, Andr_ J. Meyer, Jr.

and William C. Morgan

SUMMARY

An investigation was conducted in a modified turbojet engine to de-

termine the cooling characteristics of the semistrut corrugated air-

cooled turbine blade and to compare and evaluate a leading-edge tip cap

as a means for improving the leading-edge cooling characteristics of

cooled turbine blades.

Temperature data were obtained from uncapped air-cooled blades

(blade A), cooled blades with the leading-edge tip area capped (blade B),

and blades with slanted corrugations in addition to leading-edge tip caps

(blade C). All data are for rated engine speed and turbine-inlet tem-

perature (1660 ° F). A comparison of temperature data from blades A and

B showed a leading-edge temperature reduction of about 130 ° F that could

be attributed to the use of tip caps. Even better leading-edge cooling

was obtained with blade C. Blade C also operated with the smallest

chordwise temperature gradients of the blades tested, but tip-capped

blade B operated with the lowest average chordwise temperature. Accord-

ing to a correlation of the experimental data, all three blade types

could operate satisfactorily with a turbine-inlet temperature of 2000 ° F

and a coolant flow of 3 percent of engine mass flow or less_ with an

average chordwise temperature limit of 1400 ° F. Within the range of

coolant flows investigated_ however_ only blade C could maintain a

leading-edge temperature of 1400 ° F for a turbine-inlet temperature of

2000 ° F.

INTRODUCTION

The advantages and problems of turbine blade cooling have been dis-

cussed in many reports and publications (e.g., those listed in the bibli-

ography of ref. i). Two of the most difficult problems associated with

turbine cooling are structural integrity and adequate cooling of the



leading edge. The structural integrity of the basic cooled blade of
this report (semistrut, corrugated, air-cooled) has been proved at rated
operating conditions and is reported in reference 2.

Leading-edge cooling is madedifficult by three factors: (1) the
heat-transfer rate to the blade is higher at the stagnation point (on
the leading edge) than at any other point on the cooled blade; (2) it is
difficult to provide adequate internal cooling surface area in the
leading-edge region to carry away the heat transferred from the gas to
the blade; and (3) the cooling air discharging from the tip of the blade
discharges against a higher pressure at the leading edge than at any
other portion of the blade, and this reduces the flow rate to the
leading-edge region. Research on the first two problems is reported in
references 3 to 5. The leading-edge radius was increased to reduce gas-
to-blade heat-transfer rates and at the sametime improve the flow and
surface-area conditions inside the leading edge. However, this improve-
ment in leading-edge cooling can result in a penalty in aerodynamic per-
formance. Leading-edge film cooling and improved cooling by conduction
where the inside of the blade was copper clad were also investigated.
_aese methods resulted in improved leading-edge cooling_ but the struc-
tural reliability was poor. The slots for film cooling resulted in rapid
failure under engine operating conditions. The copper cladding was both
heavy and subject to rapid oxidation at the required blade operating
temperatures.

A method of overcoming the third leading-edge problem, that is, dis-
charging cooling air against the high pressure at the leading edge, is
the research discussed herein. The investigation was conducted on semi-
strut corrugated air-cooled blades similar to those described in refer-
ence 2. Twointernal-corrugation configurations were investigated that
were designed either to have high internal surface area at the leading
edge or to direct a maximumamountof cooling air to the leading edge.
In addition, tip cap arrangements were investigated that were designed to
let the cooling air to the leading edge discharge into a lower pressure
region, which would result in higher coolant flow rates to the leading
edge_ particularly at the low flow rates desirable for best engine per-
formance. The experimental investigation was conducted at rated engine
speed (1300 ft/sec tip speed) and turbine-inlet temperature (1660° F).
The experimental data were analytically extrapolated to determine turbine
blade operating temperatures for turbine-inlet temperatures of 1800° and
2000° F.
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APPARATUSANDINSTRUMENTATION

Blades

The basic construction of the blades used for this investigation is
described in reference 2 and shownin figure 1. The struts were machined
from standard S-816 forged turbine blades_ and the shell componentsand
corrugations were madefrom L-605 sheet. The blade assembly was brazed
together (in a vacuumfurnace) with a high-temperature braze.

The temperature data reported herein are for three pairs of cooled
blades_ one pair of blades as described in reference 2 and shownin fig-
ure l, and two pairs that were modifications of this basic design. The
basic blade will be hereafter referred to as the uncappedair-cooled tur-
bine blade or blade A. This blade had the corrugations extending as far
as possible into the leading edge to obtain a maximumof augmentedsur-
face area in this region.

The construction of the second pair of blades was the sameas that
of blade A except that the leading- and trailing-edge tip corners of the
corrugations and inner shell were removedon a _5° diagonal before blade
assembly (fig. 2). These tip corners of the corrugations were removed so
as to provide a small plenum chamberfor the expendedcooling air to ex-
haust into before moving through the blade tip. A 0.020-inch-thick piece
of L-605 was fitted and brazed as a leading-edge tip cap (fig. 2). The
chordal length of the cappedportion_ that portion that was forced to ex-
haust to the trailing edge_was approximately 20 percent of the chord.
This blade will be referred to as the leading-edge tip-capped cooled tur-
bine blade or blade B.

The third pair of blades investigated were leading-edge tip-capped
blades with slanted corrugations (fig. 5). The corrugation section was
cut so that the corrugations were approximately _5° to the leading edge
of the blade. All cooling air was brought across the strut and up the
leading edge through the corrugations to the trailing-edge tip section.
This corrugation arrangement was devised to induce the maximumcooling
flow rate to the leading edge. This blade was also a brazed assembly.
The tip cap shownin figure 5 was fitted on top and welded to the shell.
It extended for approximately 50 percent of the chord. This blade type
will be referred to as the slanted-corrugation tip-capped blade or
blade C.

Engine

The data reported herein were obtained from the test blades when
they were operated in a jet engine with a single-stage turbine. The
blade installation is described in reference 2. The turbine was modified



to supply cooling air to two test blades located diametrically opposite
one another. Laboratory air was supplied to the blades through a special
modified tailcone assembly shownin figure 4. The details of the modifi-
cation are described in reference 6.

Instrumentation

Blade temperature measurement. - The thermocouples were located on

the outer shell and the strut of the test blades, as noted in figures 5 to

7. Temperature measurements were concentrated in the region at the end

of the strut because reference 2 indicates this to be the critical region

for this type of blade. The thermocouples on the shells were of the NACA

embedded type held in the grooves with ceramic cement (ref. 7). The

thermocouples on the struts were spotwelded to the strut. An NACA 24-

ring (12-thermocouple) thermocouple slip-ring assemblywas used to com-

plete the circuits to the recording instruments.

Pressure measurement. - Static-pressure measurements were made in

the turbine shroud band directly over the turbine blades. The measure-

ment positions were 1/4 inch ahead of the leading edge_ the leading edge,

25 percent chord, midchord, 75 percent chord, the trailing edge, and i/4

inch behind the trailing edge. A schematic view of this system is shown

in figure 8(a).

PROCEDURE

After two blades of a given type were installed in the turbine

wheel_ the tailcone assembly was installed. With the blade cooling air-

flow set at a maximum, the engine was started and accelerated to the

rated speed of 11,500 rpm and a turbine tip speed of 1300 ft/sec. The

clamshell exhaust nozzle was closed until the rated exhaust-pipe tempera-

ture of 1260 ° F (inlet gas temperature of approximately 1660 ° F) was

reached. Temperature data were obtained first with the maximum coolant

flow rate and then with reduced coolant flows. After all temperature

data were obtained with coolant flows from maximum to zero, a cover was

welded over the entire tip area of each test blade and the engine again

was operated at rated conditions to determine the leakage (cooling air

that did not go through the blades). The cooling-air supply pressure in

the tailcone was set at the same values as for the coolant-flow tempera-

ture data. The flow registered was assumed to be the leakage around the

seal and the bases of the test blades. The data from these leakage tests

were used to correct the coolant flows for the heat-transfer data.
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RESULTSANDDISCUSSION

The data for various thermocouple positions and coolant-flow rates
for the six blades tested are shownin figures 5 to 7. Incomplete data,
such as in figure 6 were the result of thermocouple failures. The vari-
ation in temperature betweenblades of a given pair was probably due to
variations in manufacture and coolant flow.

Figure 5 presents the temperatures for the uncappedA blades, for
an uncooled conventional solid blade_ and for the cooling air just be-
fore it entered the blade base. The maximumsolid-blade temperature
reached at the midchord and the spanwise position corresponding to the
end of the strut of the cooled blades was approximately 1400° F. Excel-
lent agreement is apparent at the samelocations on blades A-I and A-2.
The most significant point to observe_ however_ is the poor cooling of
the leading edge at low flow rates. The leading-edge temperature is

lowered only 90° F (1370° to 1280° F) with a flow of i_ percent of engine

mass flow even though the incoming coolant is i000 ° F colder than the

leading-edge metal temperature. Coolant flow in percent of engine mass

flow will hereafter be referred to as percent flow. The same lag is also

somewhat apparent at the midchord-midspan position both in the shell and

on the strut.

Discolorations of shielded parts of blades tested to failure (in-

vestigation reported in ref. 2) and blades that were run for long time

periods was evidence that_ in addition to high temperatures in the lead-

ing edge, hot combustion gases may have circulated in the leading-edge

section_ mixed with cooling air, and then passed out the trailing-edge

region. These indications first led to the research which is the basis

of this report. From these observations, it was assumed that the static

exhaust gas pressure in the leading-edge region at the blade tip was

probably greater than the coolant supply pressure at low flow rates.

Data obtained to indicate qualitatively the static exhaust gas pres-

sures over the blade tip are presented in figure 8(a). These data were

obtained from static-pressure taps located in the turbine shroud as

schematically shown in the figure. The static-pressure profile measured

is assumed to be indicative of the pressure profile immediately above the

tips of the rotating blades. The values of these pressures would include

the effects of such variables as turbine blade tip clearance, cooling air

exhausting from the tips of cooled blades (particularly if all the blades

were cooled), and boundary-layer conditions. Considering the chordwise

pressure profile in figure 8(a)_ it can be concluded that the coolant

pressurerequired at the blade tip to force cooling air through the lead-

ing edge is greater than at the trailing edge; therefore, at low flows

the trailing edge will cool more effectively than the leading edge. Pre-

sented in figure 8(b) is the cooling-air supply pressure measured for the



values of coolant flow. These data are for the three blade types re-
ported herein. The static pressure of the coolant was measuredat the
hub of the turbine rotor. These pressures differ from the blade tip
pressures because of the pressure rise from the centrifugal pumping ef-
fect in the blades and radial coolant supply passages and the pressure
drop through the blade. Actual measurementof cooling-air pressures at
the blade tip were not madebecause adequate instrumentation for such
measurementshas not been developed. The difference in pressure required
for the three blade types for a given coolant flow is due to the differ-
ence in the pressure drop through the blades. Blade C had the largest
pressure drop.

The cooling-air pressure at the blade tip must be at least as great
as the exhaust gas static pressure in order for cooling air to exhaust
at the blade tip. If the leading-edge tip region is capped and provi-
sions are madefor transporting the expendedleading-edge cooling air to
the lower gas pressure region at the trailing edge, blade cooling should
greatly improve at low flows. This is the reasoning that led to the de-
sign of blade B (fig. 2). The results are shownin figure 6. Compari-
son of figures 5 and 6 showsthat at 1 percent flow the average tempera-
ture at the leading edges of the cappedblades is about 130° F lower than
at the samelocation of the uncappedblade A-1. At 2_ percent flow the
temperature difference is small. g_

From figures 5 and 6 it is apparent that the midchord and particu-

larly the trailing edges are cooled much more than the leading edge. If

the fresh cooling air can be introduced to the leading-edge section

first, where the heat flux into the blade is a maximum, further improve-

ments in blade cooling should be achieved. This feature is the design

principle behind blades C (fig. 3). The air is passed first over the

base of the strut where it picks up very little heat, then into the

leading-edge region, next diagonally across the blade, and finally up the

trailing edge and out the blade tip at the trailing edge, where the main-

gas-stream static pressure is lowest. The test results of this design

are presented in figure 7. Comparison of figures 5 and 7 shows an aver-

age decrease of about 180 ° F in leading-edge temperatures on the slanted-

corrugation blades as compared with the uncapped blade A-1 at 1 percent

flow, and at 2_ percent flow the leading-edge temperature was 80 ° F
lower.

The leading-edge temperature comparison can be seen better in figure

9. The temperatures for the two blades of designs B and C were averaged.

The improvement in leading-edge cooling exhibited by the tip-capped

blades B and C is self-evident. With a coolant flow of 2.5 percent the

leading-edge temperature of blade C was reduced to approximately 550 ° F

below that of the uncooled solid blade. The chordwise temperature

!

O



distribution for the three blades is given in figure i0. At coolant

flows from 1/2 to 3 percent the slanted-corrugation blade (blade C) had

the lowest temperature gradient of the three blade types investigated.

Blade B had the lowest average chordwise temperature. The relative merit

of a low leading-edge temperature with a minimum chordwise temperature

gradient and a higher leading-edge temperature with the lowest possible

midchord and trailing-edge temperatures (low average chordwise tempera-

ture) would have to be determined for each individual blade design. The

data herein illustrate that it is practical to design air-cooled blades

that have very low chordwise temperature gradients. A uniform chordwise

temperature gradient would be desirable in keeping the thermal stresses
to a minimum.

For the brazed blade structure of many components reported in ref-

erence 2 and herein, it is desirable to operate with a minimum leading-

edge temperature and an associated minimum chordwise temperature gradient.

Figure ii was plotted to indicate the spanwise temperature distribu-

tion at coolant flows of i and 3 percent for those points where data are

available; only one thermocouple was installed on the leading edge of the

uncapped blades. Also included on the graph is the design temperature,

the actual spanwise temperature distribution measured at midchord on un-

cooled solid blades and used in reference 2 for designing the uncapped

blade (blade A) for use at higher turbine-inlet temperatures. The gradi-

ent for blade C was approximately the same as the design gradient. The

steeper gradient exhibited by the capped blade is not poor from the

standpoint of static strength, however, because higher temperatures can

be tolerated near the blade tip where stresses are low. The important

point is the magnitude of the temperature in the base of the strut and

in the blade shell near the end of the strut. The base temperatures of

all the struts are very safe (figs. 5 to 7); in fact, at a coolant flow

4 percent the measured strut temperatures were a minimum of 700 ° Fof

below the design temperature of 1200 ° F (ref. 2) for the strut base of

these blades. From figure ii it is apparent that at 1-percent flow the

leading edge of the uncapped blade shell is operating at design tempera-

ture with a turbine-inlet temperature of approximately 1660 ° F (rated

for the uncooled blades).

COOLING POTENTIAL AT TURBINE-INLET TEMPERS OF 1800 ° AND 2000 ° F

The correlation procedure presented in reference 8 was used to pro-

ject the experimental data obtained at rated engine conditions (turbine-

inlet temperature, 1680 ° F; engine speed, 11,500 rpm; turbine tip speed_

LSO0 ft/sec) to elevated turbine-inlet temperatures of 1800 ° and 2000 ° F.

The average of the chordwise temperatures presented in figure i0 was used

as the basis for the correlation. These average chordwise temperatures

plus the correlation results are presented in figure 12.
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Blade B would operate with a lower temperature or more efficiently
at all coolant flows. With turbine-inlet temperatures of 1800° and
2000° F and coolant flows above approximately 2 percent_ blade C operates
with the highest average chordwise temperature.

The structural integrity of this basic turbine blade structure was
proven and is reported in reference 2. The blades operated satisfacto-
rily without cooling air, or at a blade temperature of approximately
1400° F. Figure 12 showsthat with a turbine-inlet temperature of
1800° F and a maximumassumedallowable average blade temperature of
1400° F all three blade types could operate satisfactorily with coolant
flows of approximately 1.15 percent. With a turbine-inlet temperature
of 2000° F blades A, B, and C could operate with coolant flows of about
2.5_ 1.7, and 3 percent, respectively. Considering only the average
chordwise temperature in the shell at the end of the strut, blade B is
the most efficient blade investigated.

Reference 8 also extends the correlation to a determination of local
blade temperatures. Therefore, this correlation was used to estimate the
leading-edge temperature at the end of the strut for turbine-inlet tem-
peratures of 1800° and 2000° F. Figure 13 presents these data. Also
plotted for comparison are the experimental data for rated engine con-
ditions, for which the assumedallowable leadlng-edge blade temperature
is 1400° F. With a turbine-lnlet temperature of 1800° F, blades A_ B,
and C would require coolant flows of approximately 2.6_ 1.4, and 1 per-

cent, respectively. At a turbine-inlet temperature of 2000 ° F, blade C

requires a coolant flow of approximately 3.6 percent. Furthermore, blade

C is the only blade that could operate with an allowable leadlng-edge

temperature of 1400 ° F. Therefore, when the leading-edge temperature is

considered as an operating limit, blade C is the most efficiently cooled
blade.

It should also be noted that in figure 35 the leading-edge tempera-

tures of blades A and B approach one another at increased coolant flows.

These data prove the value of the tip cap. As the cooling-air supply

pressure is increased, the cooling effectiveness of blade A improves un-

til the coolant flow in the leading edge of the uncapped blade is equal

to the flow in the capped blade. Thus with increased coolant flows the

two blades would operate at the same leading-edge shell temperatures.

For engine operation at an elevated turbine-inlet temperature of

2000 ° F_ blade B would be most desirable because of its low average

chordwise temperature, low pressure drop_ and ease of fabrication. If a

low chordwise thermal gradient and a low leading-edge temperature were

most important, blade C would be most desirable. Practically, a blade

could be designed with the corrugations oriented and shaped so that the

cooling characteristics would fit the specific application.
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SUMMARY OF RESULTS

The leading edge of air-cooled turbine blades will not cool effi-

ciently until the coolant supply pressure is greater than the exhaust

gas pressure in the tip region_ where the expended coolant is exhausted.

The tip caps proposed herein permit the leading edge of the blade to

cool more effectively with low coolant flows because the coolant is ex-

hausted to the lower pressure region. The results of the investigation

can be summarized as follows:

I. The reduction in leading-edge temperatures through use of tip

caps was most effective at coolant flows below approximately 2 percent

of engine mass flow. A leading-edge temperature reduction of up to

130 ° F was attributable to the tip caps.

2. Tip-capped blade B with radial corrugations operated with the

lowest average chordwise temperature.

3. The slanted-corrugation blade C operated with the lowest leading-

edge temperature and also with the smallest chordwise temperature gradi-

I
ent. With a coolant flow of 2_ percent of engine mass flow the leading-

edge temperature was approximately 350 ° F below that of the uncooled

blade.

]

4. With a coolant flow of 2_ percent of engine mass flow the meas-

ured strut temperature at the base of all blades was a maximum of 500 ° F,

while the safe design temperature was 1200 ° F.

5. According to a correlation of the experimental data, all three

blade types could operate satisfactorily with a turbine-inlet temperature

of 2000 ° F and a coolant flow of 3 percent of engine mass flow or less,

with an average-chordwise-blade-temperature limit of 1400 ° F.

6. Within the range of coolant flows investigated, only blade C

could maintain a leading-edge temperature of 1400 ° F with a turblne-inlet

temperature of 2000 ° F. A coolant flow of 3.6 percent would be required.

Lewis Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, November 14, 1958
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